O.P.Code: 23EE0214

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 INDUCTION AND SYNCHRONOUS MACHINES

(Electrical & Electronics Engineering)

			(Electrical & Electronics Engineering)	10		
•	Time: 3 Hours					s: 70
			PART-A (Angurer all the Overtions 10 m 2 m 20 Marks)			
	1		(Answer all the Questions $10 \times 2 = 20$ Marks) What is slip in an induction mater?	CO1	т 1	23.4
	1	a b	What is slip in an induction motor? What are the two types of 3 phase induction motors?	CO1	L1	2M
		c	What are the two types of 3-phase induction motors? What is the slip at maximum torque in an induction motor?	CO1	L1 L1	2M
		d	What is the main difference between crawling and cogging?	CO ₂	L1 L3	2M
			List out any two applications of Shaded pole induction motor.	CO ₂		2M
		e f	Name any two application of a single-phase induction motor.	CO3	L4 L3	2M 2M
		g	What are the main parts of a synchronous generator?	CO4	L3 L2	2M
		b h	How is the frequency of a synchronous generator related to speed	CO4	L3	2M
		11	and number of poles?	CO4	L3	2111
		i	What is meant by "loss of synchronism" in a synchronous motor?	CO5	L2	2M
		j	What is the relation between rotor speed and stator frequency in a	CO5	L3	2M
		J	synchronous motor?	COS	LIS	2111
			PART-B			
			(Answer all Five Units 5 x 10 = 50 Marks)			
	2	a	Explain the production of rotating magnetic field in 3 phase	CO1	L4	6M
	_		Induction motor.	COI	LIT	OIVI
		b	A three-phase squirrel cage induction motor connected to 50HZ line,	CO1	L3	4M
			possesses the synchronous speed of 1000 rpm. the motor absorbs			11/1
			35KW and the stator copper and iron loss amount to 6KW and 2KW			
			respectively, calculate torque developed by the motor.			
			OR			
	3	a	Explain the phasor diagram of 3 phase induction motor.	CO1	L3	7M
		b	List out the applications of 3 phase induction motor.	CO ₁	L2	3M
			UNIT-II			
	4	a	Explain the rotor resistance speed control of 3Ø induction motor	CO ₂	L4	5M
			indetail.			
		b	The power input to the rotor is of 440V,50Hz, 4 poles, 3 phase	CO ₂	L5	5M
			induction motor is 60KW. The electromotive force is observed to			
			make 100 complete alterations per minute. Calculate (i) slip			
			(ii)rotor speed (iii) rotor copper loss per phase.			
			OR			
	5	a	Describe the working principle of Induction generator.	CO ₂	L2	7M
		b	Describe Applications Induction generator.	CO ₂	L2	3M

1	TENTER TEN
ı	
ı	OTALY-TIL

6	a	Explain the double field revolving theory of 1Ø induction motor.	CO ₃	L4	5M
	b	In a 4-pole, 50 Hz single-phase Induction motor, the power absorbed	CO ₃	L4	5M
		by the forward and backward field rotor equivalent resistances are 100			
		W and 15W respectively at a motor speed of 1420 rpm. The total			
		mechanical loss is 30W. Compute the shaft torque at the above speed.			
		OR			
7		Explain the construction and operating principle of shaded pole	CO3	L2	10M
		induction motor. List out the merits, demerits and applications.			
		UNIT-IV			
8		Explain the constructional details of salient and non-salient pole	CO4	L5	10M
O		alternators.		Ц	101/1
		OR			
9	a	Explain the working operation of the alternator.	CO4	L2	5M
		Describe the methods of synchronization of alternators.	CO4	L1	5M
	D	UNIT-V	co.		5171
4.0			005	т 1	~ h /r
10	a	Explain the construction and working principle of a synchronous	CO5	L1	5M
	_	motor.	005	т 2	CD C
	b	A 1000 kVA, 11,000 V, 3-Phase star connected synchronous motor	CO5	L3	5M
		has an armature resistance and reactance per phase of 3.5 Ω and 40			
		Ω respectively. Determine the induced emf of the motor when fully			
		loaded at 0.8 pf lagging.			
		OR	005	т 2	<i>5</i> N <i>4</i>
11		Describe the applications of synchronous motor.	CO5	L2	5M
	b	A 3-phase 11000V, the star-connected synchronous motor takes a	CO ₅	L3	5M
		load current of 100A. The effective synchronous reactance and			
		resistance per phase are 30 Ω and 0.8 Ω respectively. Find the			
		power supplied to the motor and induced EMF at 0.8 p.f leading.			
		*** END ***			